Sunday, July 23, 2017

Solar eclipse 2017

On August 21, 2017, there will be a solar eclipse occurring coast to coast across the continental United States. The last time this happened was almost a century ago in 1918. This has two effects on states that generate a lot of solar energy: the solar energy generated decreases during an Eclipse and people turn on their lights as the sky darkens. Both of these events stress the utility grid.  California's utilities are asking people not to turn on the lights during this event. I am surprised such a short event (and California is not even in the path of totality) can cause concerns for power utilities operators. I wonder if something similar happens when there is no wind in the summer and more people turn on their fans to cool off?

Monday, July 17, 2017

Happy Yellow Pig Day!

Today, July 17 is Yellow Pig Day. This "holiday" was created by Princeton math students Michael Spivak and David C. Kelly when they were analyzing the number 17 and wanted to have a day to celebrate this number. This year (2017) is extra special since the year also ends in the digits 17.
Michael Spivak is the author of the wonderful differential geometry texts (published by Publish-or-Perish Press which he founded) which I fondly remember reading in graduate school. He also wrote a popular typesetting book on TeX which I did not read since Leslie Lamport's book on LaTeX makes typesetting papers using LaTeX so easy that I have skipped learning TeX and went straight to using LaTeX (which sits on top of TeX).
If I remember correctly, the typesetting software I used prior to LaTeX was ChiWriter, which is quite easy to use as it is WYSIWYG, so moving to a typesetting paradigm where you relinquish control on the formatting, page breaks, etc. to the software is quite unnerving, but I soon learn to appreciate it as I can focus on the content of the document, rather than spend time improving its appearance.

Sunday, June 4, 2017

Moon and Jupiter on June 3, 2017

The Moon and Jupiter are in close proximity (not physically, but as viewed from Earth) on the night of June 3, 2017.

Sunday, May 21, 2017

The race of Cloud Computing

I wrote earlier about a news digest app returning supplemental information which is not directly related to the article. Today, I read on the app that the horse "Cloud Computing" has won the Preakness race. And sure enough, there is a box underneath the article with a definition of cloud computing from Wikipedia. What is ironic is that this news summary is probably enabled by leveraging cloud computing. "Cloud Computing" won over "Classic Empire" by coming in from behind and won the race by a head. Perhaps this is an indication how cloud computing will overtake the classical empire of on premise computing😊.

Thursday, May 11, 2017

Find interesting properties of your favorite number

I created a simple web application where you can enter a positive integer < 1012 , wait a few moments and it will return a list of interesting properties about this number. Please give it a try and let me know what you think!

To start, please visit: http://postvakje.pythonanywhere.com/

Sunday, May 7, 2017

Spring is here, pt. 2


House Finch


Chipping Sparrow
My wife says it reminds her of Red from Angry Birds

Tuesday, May 2, 2017

12345

The number 12345 is interesting as it is a sphenic number (product of 3 distinct primes) and its digit reversal 54321 is also a sphenic number.

Tuesday, April 18, 2017

Palindromic primes which are sums of 3 consecutive primes

OEIS sequence A113846 lists palindromic primes $q$ which are the sums of 3 consecutive primes $p_1$, $p_2$, $p_3$ such that $p_2$ is also a palindromic prime.

Theorem: All terms of A113846 have an odd number of digits and the first digit (and last digit) is either 3 or 9. In addition, $p_2$ and $p_3$ have the same first digit and $p_2$ and $p_3$ have the same number of digits as $q$. The first digit of $p_2$ (and $p_3$) is equal to the first digit of $q$ divided by 3, i.e. if the first digit of $q$ is $3$, then the first digit of $p_2$ and $p_3$ is $1$.

Proof: First note that all palindromes with an even number of digits is divisible by 11. Let $p_1$, $p_2$, $p_3$ be 3 consecutive primes such that $p_2$ is a palindrome and $q = p_1+p_2+p_3$ is a palindromic prime.  It is clear that $q, p_2 > 11$ and have a odd number of digits since the first term of A113846 is 31513.
The first digit of $p_2$ cannot be 2 since $p_2$ is odd. Next we show that the first digit of $p_2$ is either 1 or 3.
Let $k$ be an even integer such that $p_2$ has $k+1$ digits. Suppose the first digit of $p_2$ is 4 or larger, i.e. $4\cdot 10^k \leq p_2 < 10^{k+1}$. Then by Bertrand's postulate (or Bertrand-Chebyshev theorem), $p_1\geq \frac{p_2}{2}$ and $p_3 \leq 2p_2$. This implies that $10^{k+1} > p_1 \geq 2\cdot 10^k$, $4\cdot 10^k < p3 \leq 2\cdot 10^{k+1}$ and thus $10^{k+1} < q < 4\cdot 10^{k+1}$, i.e. $q$ has an even number of digits, a contradiction.
Next we show that the first digit of $q$ is 3 or 9. To do this, we need a stronger result than Bertrand's postulate for the prime gap. Since $p_2 > 647$, Rohrback and Weis's 1964 result [1] shows that $p_1 \geq \frac{12}{13}p_2$ and $p_3 \leq \frac{14}{13}p_2$.
This shows that $2\frac{12}{13} p_2 \leq q \leq 3\frac{1}{13} p_2$. Since $q$ is prime, it cannot start with the digit 5. If $p_2$ start with the digit 1, then $2\cdot 10^k \leq q \leq 6 \frac{2}{13} 10^k$ and thus $q$ must start with the digit 3.
If $p_2$ start with the digit 3, then $8\frac{10}{13}10^k \leq q \leq 12\frac{4}{13}10^k$. Since $q < 10^{k+1}$, this means that $q$ must start with the digit 9.
Clearly $p_3$ must have the same number of digits as $p_2$ and as $q$.
Finally, we show that $p_3$ has the same starting digit as $p_2$. Suppose $p_2$ starts with the digit 1. If $p_3$ has a different starting digit, this must mean that $p_3 \geq 2\cdot 10^k$, i.e.
$p_2 \geq 1\frac{11}{13}10^k$, $p_1\geq 1\frac{119}{169} 10^k$ and $q \geq 4\cdot 10^k$, a contradiction.
Suppose $p_2$ start with the digit 3. If $p_3$ has a different starting digit, this must mean that $p_3 \geq 4\cdot 10^k$, i.e.
$p_2 \geq 3\frac{9}{13} 10^k$, $p_1 \geq 3\frac{69}{169}10^k$ and $q\geq 10^{k+1}$, a contradiction. QED

This argument also shows that to search for terms, for each $k$, one only needs to consider for $p_2$ the palindromic primes in the ranges $(10^k, 1\frac{7}{19}10^k)$ and $(3\cdot 10^k, 3 \frac{8}{19}\cdot 10^k)$ which amount to approximately $0.79\cdot 10^{\frac{k}{2}}$ palindromes to consider rather than a full search of $10\cdot 10^{\frac{k}{2}}$ palindromes of length $k+1$.

Conjecture: For all terms in A113846, the corresponding primes $p_1$ has the same number of digits and the same first digit as $p_2$ and $p_3$.

References:
1. H. Rohrback and J. Weis, "Zum finiten Fall des Bertrandschen Postulats", J. Reine Angew. Math., 214/215 (1964), 432–440.

Thursday, March 30, 2017

Spring is here

It is amazing how a couple of days of sunshine and warmer weather erased most of the evidence that we had a major winter storm 2 weeks ago.


Tuesday, March 14, 2017

Pi Day 2017

Happy Pi day (and a snowy one in the Northeastern US)! One of the early childhood mathematical memories I had was learning that π can be approximated by 22/7 and accurate up to 2 decimal places, a fact that was known since antiquity. In particular, Archimedes gave the first proof that 22/7 is strictly larger than π. The fifth century Chinese mathematician and astronomer Zu Chongzhi gave the approximation 355/113 that is accurate up to 6 decimal places. Today, sophisticated algorithms using Ramanujan's formula and its variants can compute trillions of digits of π.

Thursday, March 9, 2017

Binomial coefficients

When studying binomial coefficients and how they form Pascal's Triangle, we learn that they are the coefficients of $(x+y)^n$, i.e.
$$(x+y)^n = \sum_{k=0}^n \left(\begin{array}{c}n\\k\end{array}\right)x^ky^{n-k}$$
Replacing $y$ with $-y$ we get:
$$(x-y)^n = \sum_{k=0}^n -1^k\left(\begin{array}{c}n\\k\end{array}\right)x^{n-k}y^{k}$$

For example, the coefficients of $(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$ are 1,4,6,4,1 which form the 5th row of Pascal's triangle.

What happens if the coefficients of the polynomial are repeated binomial coefficients such as 1,1,4,4,6,6,4,4,1,1? What is $$\sum_{k=0}^{2n+1} \left(\begin{array}{c}n\\\lfloor k/2\rfloor\end{array}\right)x^ky^{n-k}?$$

It is easy to show that this is equal to $y(x^2+y^2)^n + x(x^2+y^2)^n = (x+y)(x^2+y^2)^n$.

What about repeating coefficients with sign changes such as 1,1,-4,-4,6,6,-4,-4,1,1?
The same argument shows that 

$$\sum_{k=0}^{2n+1} -1^{\lfloor k/2\rfloor}\left(\begin{array}{c}n\\\lfloor k/2\rfloor\end{array}\right)x^{n-k}y^{k}$$

is equal to $y(x^2-y^2)^n + x(x^2-y^2)^n = (x+y)(x^2-y^2)^n$ which can be further simplified as $(x+y)^{n+1}(x-y)^n$.

If we now change the sign of every other coefficient as well, i.e. 1,-1,-4,4,6,-6,-4,4,1, -1,
we get 

$$\sum_{k=0}^{2n+1} -1^{\lfloor k/2\rfloor+n-k}\left(\begin{array}{c}n\\\lfloor k/2\rfloor\end{array}\right)x^{n-k}y^{k}$$

This can be shown to be equal to $x(x^2-y^2)^n -y(x^2-y^2)^n = (x-y)(x^2-y^2)^n$ which is equal to $(x-y)^{n+1}(x+y)^n$.

We can repeat the coefficients more than 2 times as well and show that

 $$\sum_{k=0}^{m(n+1)-1} \left(\begin{array}{c}n\\\lfloor k/m\rfloor\end{array}\right)x^ky^{n-k}$$

is equal to $\sum_{t=0}^{t=m-1}x^ty^{m-1-t}(x^m+y^m)^n$.


Friday, January 20, 2017

Interesting number: 1440000

The number 1440000 satisfies the following equation:

$$1440000^3 - 1 = 1439940^3 + 71999^3 = 1440060^3 - 72001^3$$

By Fermat's Last Theorem (for which the case $n=3$ was proven by Euler), $1440000^3$ cannot be the sum or difference of 2 positive integer cubes. The above equation shows that $1440000^3-1$ is the sum and the difference of 2 positive integer cubes.

Thursday, January 12, 2017

March or May?

I looked at the expiration date on a tube of toothpaste today and it said: MA17.  Is it March 2017 or May 2017? There doesn't seem to be a standard 2-digit abbreviation for the English names of months.

Number of 2 by 2 matrices with all elements in {0,1,..,n} and its permanent equal to the sum of all elements

OEIS sequence A280934 is defined as: $a(n) =$ the number of 2 by 2 matrices with all elements integers in the set $\{0,1,..,n\}$ and its permanent is equal to the sum of all elements.

Consider a 2 by 2 matrix $\left(\begin{array}{cc}a & c \\ d & b\end{array}\right)$. The sum of all elements equal to the permanent is written as $a+b+c+d = ab+cd$. This can be rewritten as $(a-1)(b-1) + (c-1)(d-1) = 2$. In other words, $a(n) =$ the number of 2 by 2 matrices with all elements integers in the set $\{-1,..,n-1\}$ and its permanent is equal to 2. We will consider this alternative formulation in the rest of this note. Suppose $n > 3$ and at least one of members of the matrix has value $n-1$. Let us count how many of such matrices has permanent 2, i.e. $ab+cd = 2$.

First consider the case $a = n-1$. If  $b = -1$, then $cd = n+1$. Note that $c \neq 1$ and $c \neq n+1$ since $-1\leq c,d\leq n-1$. Since $n> 3$, any nontrivial factor of $n+1$ is less than $n-1$. Thus setting $c>1$ equal to any nontrivial factor of $n+1$ and $d = (n+1)/c$ will result in a matrix with permanent 2. Thus there are $\tau(n+1)-2$ such matrices. Here $\tau(n)$ denotes the number of divisors of $n$. If $b = 0$, then $cd = 2$ and there are 2 cases: $(c,d) = (1,2)$ and $(c,d) = (2,1)$. If $b=1$, then $cd = 3-n$ and there are 2 cases as well: $(c,d) = (-1,n-3)$ and $(c,d) = (n-3,-1)$. Note that $cd \geq 1-n$ since $-1\leq c,d\leq n-1$. This means that if $b > 1$ then $ab+cd \geq n-1 > 2$. Thus we have a total of $\tau(n+1)+2$ cases. Note that in all cases, exactly one element of the matrix is of value $n-1$.

By symmetry, the same analysis applies to $b=n-1$, $c=n-1$ and $d=n-1$ as well. Since in all the cases only one element of the matrix is of value $n-1$, there is no double counting. Thus the number of matrices with at least one member equal to $n-1$ and permanent 2 is $4\tau(n+1)+8$. This implies the following recurrence relation for $a(n)$:

$$a(n) = a(n-1) + 4\tau(n+1)+8 \quad\mbox{for}\quad n> 3$$.